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Abstract 

The classical renin–angiotensin system (RAS) regulates the 

physiological hemostasis and diseases of cardiovascular system. 

Recently, with the outbreak of severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) causing the disease COVID-19, scientists 

are struggling to understand how SARS-CoV-2 resembles and differs 

from SARS-CoV in the genomic and transcriptional levels. In short 

period, a growing body of research has been released and reported about 

new factors in RAS, such as angiotensin converting enzyme 2 (ACE2) 

and angiotensin (1-7) [Ang (1-7)]. The ACE2 has been shown to be 

protective factor in cardiovascular diseases through different 

mechanisms and also an important tool for entry and pathogenesis of 

SARS-CoVs. This review summarizes the current knowledge about 

ACE2 as a new factor that broadened the activity of the RAS and at the 

same time as a receptor for SARS-CoV and SARS-CoV-2 facilitating cell 

entry. 

Conclusion: Grasping the cellular activity of ACE2 and Ang (1-7) is 

required for better therapies for cardiovascular diseases. In addition, 

strategies targeting ACE2 may offer beside vaccines a novel approach in 

the search for prevention and management of COVID 19. 
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 ملخص الدراسة

على تنظيم الوظائف الفسيولوجية وأمراض (  (RAS تقليديأنجيوتنسين ال-يعمل نظام الرينين 

الرئوي الحاد  متلازمة الالتهابواضطرابات نظام القلب والأوعية الدموية. ومؤخراً، ومع تفشي 

، شرع 19( المسمى سارس  والمسبب لمرض الكوفيد   (SARS-CoV-2 2-للفيروس التاجي 

في المستويات     SARS-  CoV   و  CoV-2-سارسأوجه الشبه والاختلاف بين العلماء لفهم 

عداد ومجموعات متزايدة من البحوث التي أصدار إتم  الأخيرةفترة الالجينومية والنسخية. وفي 

 2نزيم المحول للأنجيوتنسين مثل الإ نسين،انجيوت-تناولت العوامل الجديدة في نظام الرنين

عامل وقائي في أمراض  ACE2ت أن اأثبتم (. وقد 7-1( والأنجيوتنسين )ACE2والمسمى )

الفيروسات  ومستقبل لدخولالقلب والأوعية الدموية من خلال آليات مختلفة وأيضا أداة هامة 

ما تناولته المراجع الاستعراض  ويلخص هذا الرؤي.التاجية وكعامل ممرض لها مسببا الالتهاب 

وفي نفس الوقت كمستقبل  RASكعامل جديد وموسع لنشاط    ACE2لمعرفة الحالية لانزيم ل

 .ومسهل لدخولهما الخلية SARS-CoV-2 &   SARS CoV  للفيروس  

مطلوب لعلاج أفضل  Ang (1-7)و ACE2إن استيعاب النشاط الخلوي لـ  الاستنتاج:

لأمراض القلب والأوعية الدموية. وبالإضافة إلى ذلك، قد تقدم الاستراتيجيات التي تستهدف 

ACE2 البحث عن الوقاية والعلاج لمرض بجانب اللقاحات نهجا جديدا في COVID 19. 

 نزيم المحولالإ ،2-، الفيروس التاجي الرئوي الحاد متلازمة الالتهاب كلمات مفتاحية:ال

 (.7-1انجيوتنسين ) ،، نظام الرنين الانجيوتنسين2-للانجيوتنسين

 

 1قسم علم الادوية والسموم كلية الصيدلة جامعة عدن الجمهورية اليمنية.

 2مستشفى صابر-عدن.
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he classical renin–angiotensin 

system (RAS) that has been 

evolved over 60 years 

influences multiple physiological 

pathways at both intracellular and 

endocrine levels. In addition, local 

RASs are present in various tissue 

throughout the body. RAS, both 

circulating and tissue RAS, regulates 

the cardiovascular function and also 

possesses a causative role in the 

development of hypertension [1]. 

Nowadays, understanding of RAS 

has substantially increased and 

seems to be more complex than 

previously thought. In a simplified 

pathway, the RAS exerts its action 

through the hormone angiotensin II 

(Agn II), a key molecule, resulting in 

multiple effects. In this system, two 

proteolytic enzymes are involved 

which are the aspartic protease renin 

and the angiotensin-converting 

enzyme (ACE) that was discovered 

by Leonard Skeggs in 1956 [2].  

 

Renin transforms angiotensinogen, 

an α-2 globulin produced by the liver 

and released into the circulation, into 

the decapeptide angiotensin I (Ang 

I). Then, ACE converts Ang I into the 

octapeptide Ang II [3], one of the 

major players in RAS, Figure 1. It is 

worth to mention that Ang II is also 

converted into Ang III [4,5] and then 

Ang IV [6] which are shorter peptide 

fragments of RAS with lower plasma 

levels and activity [7].   For details, 

RAS activities have been described 

by Castrop et al [8].  

 

Most of the major known actions of 

RAS are related to the activity of Ang 

II. Moreover, it is well known that 

increase activity of RAS is associated 

with numerous cardiovascular 

disorders. Ang II acts on various 

receptors such as Ang II type 1 

(AT1R) and type 2 receptors (AT2R) 

[9,10]. Following binding to AT1R, 

Ang II induces pleiotropic effects 

including vasoconstriction, cell 

proliferation (mitogenic effect), 

inflammation, generation of reactive 

oxygen species, fibrosis and tubular 

ion exchange [11] as well as 

induction of plasminogen activator 

inhibitor-1 [12]. Additionally, nitric 

oxide reduction is mediated through 

AT1R by inducing excessive release 

of vascular superoxide radicals 

produced by stimulation of 

NADH/NADPH oxidase which 

inactivates nitric oxide synthase [13]. 

Under pathological conditions, Ang 

II has been shown to promote cardiac 

hypertrophy remodeling by 

stimulation of matrix protein 

expression and PAI-1 [14], vascular 

remodeling and extracellular matrix 

deposition [15]. All these effects are 

implicated in the development of 

cardiovascular disorders including 

hypertension, atherosclerosis and 

heart failure.  On the other hand, 

binding of Ang II to AT2R promotes 

vasodilatation and inhibition of cell 

growth.  These effects seem to be 

minor to Ang II. 

 

Angiotensin-Converting Enzyme 2 

(ACE2): A new RAS component 

The enzyme that hydrolyzes Ang II 

and lowers blood pressure is called 

angiotensin converting enzyme 2 

(ACE2) [16]. ACE2 was discovered 

independently by two research 

groups in 2000. Tipnis et al [17] and 

Donoghue et al [16] have used 

differing genomic-based strategies 

and naming it ACE2. It is the human 

homologue of ACE but it seems to 

have different substrate specificity, 

which is why captopril and lisinopril 

are ineffective to inhibit and 

T 
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subsequently reduce the proteolytical 

activity of ACE2 [17,18]. It has been 

found that      ACE 2, as ACE, is a 

type I integral membrane protein, 

fixed on the cell surface to hydrolyze 

circulating peptides [8].  

 

ACE2 has the ability to hydrolyze 

angiotensin 1 into Ang (1-9) [16] and 

Ang II into the heptapeptide 

angiotensin (1-7) [Ang (1-7)] by 

cleaving the carboxy-terminal amino 

acid from Ang II [19,20]. Ang (1-7) 

is then metabolized by ACE into 

inactive fragment Ang (1-5) and 

ACE-inhibitors prolong Ang (1-7) 

half-life [21]. Due to these actions 

ACE2 represents as a new 

component and broadens the activity 

of RAS.  A study in China mentioned 

that the hydrolysis of Ang II by ACE 

2 is with much higher efficiency than 

that for Ang 1 [22], where it is 

estimated to be approximately 90% 

active towards Ang II [23].            

Ang (1-7) acts through its specific 

receptor, G-protein-coupled 

receptor, called Mas [24,25] which 

mediates vasodilatation, 

antiproliferation and apoptosis [26]. 

These actions place ACE2 as a 

counteractor of RAS with a 

protective effect. On other side, 

ACE2 is also able to hydrolyze 

opioid dynorphin A, apelin-13 and 

ghrelin [20,24].  

 

Interestingly, there are two forms of 

the ACE2 enzyme; the membrane 

bound and a soluble form, which is 

separated from the membrane 

surface by proteolytic cleavage and 

needed further identification and 

characterization [17,27,28].  

Although the establishment of the 

formation of soluble form came first 

from in vitro studies [16,17]. 

Recently, in vivo studies have 

detected the soluble form in certain 

human body fluid, including urine, 

plasma, and cell culture medium by 

different technique [29,30]. 

 

Previously, some effects of the Ang 

(1-7) have been reported in 

laboratory animal studies and in vitro 

using isolated organ [31,32].   Ang 

(1-7) induces distinct actions 

including increase release of 

prostaglandin E2 from isolated rabbit 

vasa deferentia [32], counteract the 

detrimental action of Ang II, 

including vasoconstriction [26], 

vasopressin release in the brain [31], 

dilation of porcine coronary artery 

rings [33], diuretic actions and 

increase the glomerular filtration rate 

in rats [34] and natriuretic actions 

associated with prostaglandin I2 

release in isolated rat kidneys [35].   

 

Recently, a growing body of 

evidence indicates that the described 

Ang (1-7), formed by the activity of 

ACE and ACE2 [8,20] see (Figure1), 

also showing these effects in human 

tissues, plays a role in metabolic 

pathways in human endothelial    

cells [36] and increases the 

functional spectrum of RAS through 

counteracting the detrimental 

vasoconstricting and mitogenic 

effects of Ang II [37]. Moreover, 

Ang (1-7) may contribute to 

cardiovascular regulation since it is 

devoid of vasoconstrictor and central 

pressor actions [38]. Furthermore, 

the signaling mechanisms stand 

behind these effects need further 

investigations and illustrations [36]. 
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Figure 1: Angiotensin Converting Enzyme 2 in Renin Angiotensin System 

 
Angiotensinogen is transformed by renin to octapeptide angiotensin I that is converted into 

decapeptide angiotensin II by angiotensin converting enzyme (ACE) or local by chymase.  

Angiotensin II acts on angiotensin receptor 1 (AT1R) and angiotensin receptor 2 (AT2R) where its 

major actions are mediated through AT1R. Angiotensin II can be converted into angiotensin III and 

angiotensin IV which have lower activity. ACE2 cleaves Angiotensin I into Angiotensin (1-9) that 

can be converted by ACE into the heptapeptide Angiotensin (1-7). ACE2 hydrolysis Angiotensin 

II into Angiotensin (1-7) with higher efficiency than that for Angiotensin I into Angiotensin (1-9). 

Angiotensin (1-7) acts on Mas receptors and oppose the effects of Angiotensin II. 

 

 

Concerning the molecular 

mechanism of Ang (1-7), Mas 

receptors can be stimulated by Ang 

(1-7) or to a lesser extent by other 

angiotensin peptides [39]. This 

stimulation induces the release of 

arachidonic acid [25], nitric oxide 

[40,41] and to upregulate ACE2 

expression [42] which represents a 

positive feedback mechanism as part 

of counterbalance pathway of RAS. 

In addition, the activation of Mas 

receptors by ang (1-7) can also alter 

other signaling pathways [43]. 

 

Some studies have reported that at 

least some of the beneficial effects of 

using ACEI or ARBs could be 

related to increase expression and 

activity of ACE2. This has been 

investigated in in vitro where it has 

been shown that administration of 

ACEIs [44] or ARBs [45] in normal 

and post-MI rats increased cardiac 

ACE2 mRNA, protein and activity. 

Moreover, future research has to deal 

with the most addressed questions 

and problems that focus on the 

possible therapeutic potential of 

ACE2, Ang (1-7) and its Mas 

receptors representing the alternative 

pathway of RAS.  

 

Angiotensin-converting enzyme 2: 

A receptor for SARS-

Coronavirus-2 

Since the identification of severe 

acute respiratory syndrome (SARS) 

as a new illness spread in 2002-2003, 

a huge body of investigations and 

experiments has been undergoing in 

order to identify the pathogen, its life 

cycle and possible therapeutic 

potentials [46], which culminated 
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with the identity proof of a new 

SARS-coronavirus (SARS-CoV) as 

the SARS pathogen [47].  

 

In vitro studies, using different cell 

lines, demonstrated that ACE2 

protein is a SARS-CoV receptor in 

vitro [48]. Later on, in 2005, Kuba   

et al [49]. Reported the first genetic 

proof that ACE2 is a vital SARS-

CoV receptor in vivo. This receptor 

is the key for virus entry and is 

required to facilitate binding to the 

virus through its spike protein for 

entry into host cells and subsequently 

virus replication. In addition, Zhou  

et  al. (2020) demonstrated through 

in vitro experiments using different 

cells with human ACE2 that SARS-

CoV2 uses ACE2 as a cellular entry 

receptor, too [50].  

 

In fact, coronaviruses contain main 

structural proteins, the envelop, 

membrane, nucleocapsid and the 

spike protein (termed S protein) 

which is a transmembrane spike 

glycoprotein positioned on the 

surface [51].  Through its two distinct 

functional domains (S1and S2 

subunit), the spike plays a role in 

viral binding, fusion, entry and 

induction of neutralizing antibody 

and T-cell responses [47,52]. The 

S1/S2 cleavage site (called Furin 

cleave site) in the S protein 

distinguishes SARS-CoV-2 from 

SARS-CoV, that does not bear this 

cleavage site [47,53,54].  It has been 

reported that both SARS-CoV and 

SARS- CoV-2 share ACE2 as 

receptor to bind on cells and 

TMPRSS2 (transmembrane protease 

serine 2) as the main protease 

facilitating their entry into cells [50]. 

But, opposite to SARS-CoV, SARS-

CoV-2 bears a Furin cleavage site, as 

mentioned before, and the cleavage 

at this site by Furin increases binding 

affinity of SARS-CoV-2 to             

ACE 2 [55,56]. The present of Furin 

with TMPRSS2 together might 

increase permissiveness of 

respiratory tract cells for SARS-

CoV-2 and S protein priming after 

ACE2 receptor binding, (Figure 2). 

That is why SARS CoV-2 has a 

higher infection rate than SARS 

CoV.  Furin is an enzyme cleaves 

paired amino acids and is highly 

expressed in lungs [56]. 

 

Interestingly the SARS-CoV 

infections and the Spike protein of 

the SARS-CoV reduce ACE2 

expression. After binding the SARS-

CoV Surface-Spike protein to ACE2 

receptor, the expression of these 

receptors is downmodulated as 

shown in mice model [49]. Loss of 

ACE expression leads to increase 

activity of RAS resulting in acute 

lung failure [57].  So, the lethality of 

SARS-CoV-2 is partly mediated 

through over suppression of ACE2. 

Imai et al. have shown that RAS is 

implicated in severe acute lung injury 

and the SARS-CoV receptor ACE 2, 

as the counteractor of Ang II, plays a 

protective role in acute lung injury as 

shown in mice model [57].  

Following virus binding, suppression 

of ACE 2 receptors results in 

deregulation of RAS promoting Ang 

II mediated disease pathogenesis 

inducing lung edemas and 

impairment of lung function. This 

damage to the lung has been proven 

by injecting SARS-CoV Spike into 

mice which has worsen lung injury 

that is reversed by ARBs 

(angiotensin receptor blockers) 

treatment [49,57]. 
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Figure 2: Binding of SARS-CoV-2 to Its Receptor on the Host Cell Membrane 

 
The SARS-CoV S spike attaches to angiotensin converting enzyme 2 (ACE 2), then the transmembrane 

protease serine 2 (TMRPSS 2) cleaves the S protein this facilitates completely the entry of SARS-CoV but not 

SARS-CoV-2. SARS-CoV-2 is additionally and efficiently cleaved by the protease priming Furin at the 

cleavage site in S spike that facilitates its entry after receptor binding.

 

 

After the evolution of the positive-

sense RNA virus termed the severe 

acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) in 

2019 (and temporary called 2019-

nCoV) and by using computer 

modeling, many similarities have 

been found between SARS-CoV and 

SARS-CoV-2 including the receptor-

binding domain in the spike proteins 

of both viruses Xu et al [58]. Also, 

crystal structure analysis revealed the 

strong binding of the spike protein to 

human ACE2 [59]. Further analysis 

demonstrated higher affinity of 

SARS-CoV-2 than SARS-CoV to 

human ACE2 which suggests its 

increasing ability to transmit from 

individual to other [22]. A part of 

interpretation, it seems to be due to 

the recognition of amino acid residue 

394 (glutamine) in SARS-CoV-2 

receptor by lysine 31 on the human 

ACE2 receptor [22,60]. All together 

suggest that ACE2 is a critical 

receptor for SARS-CoV-2.   

 

Accumulating evidence supports that 

the lung is the most vulnerable target 

for SARS- CoV-2 than other organs 

and tissues such as the heart, kidney, 

intestine and endothelium where 

ACE2 are also expressed [27,61]. 

The likely reasons stand behind it can 

be summarized in the vast surface 

area of the lung [62], enrichment of 

the surface of the lung cells with 

ACE2 receptors, notably alveolar 

epithelial type II cells that represent 

as reservoir for viral invasion 

constituting almost 80% of ACE2-

expressing cells as reported by Zhao 

et al in bioRvix, recently [63], and 

the existence of multiple viral 

process-related genes in   ACE2-

expressing alveolar epithelial type II 

cells [63]. These genes include 

regulatory genes for viral processes, 

life cycle and assembly suggesting 

facilitation of coronaviruses 

replication in the lung by ACE2-

expressing alveolar epithelial type II 

cells [62]. In fact, the multiorgan 

dysfunctions observed in patients 
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severely infected could be explained 

by ACE2 tissue distribution [64]. 

Furthermore, ACE2 proteins are 

expressed over cortical neurons and 

glial cells making them a potential 

target for the SARS-CoV-2 attack 

and becoming the possible bases of 

anosmia (loss of taste) seen in 

patients with     COVID-19 [65]. 

Initially, anosmia and dysgeusia have 

been early seen in many patients with 

COVID-19, later on they were 

reported as significant symptoms for 

COVID-19 [66]. 

 

Taken all together, it has been shown 

that ACE2 is not only the receptor for 

SARS-CoVs but also a pathogenic 

tool. The question is how susceptible 

the human host to the virus is.  This 

issue with the rapid spread of the 

infection attract attention of the 

researchers and scientists to study the 

human genetic risk factors 

influencing disease progression. 

Some studies have reported the 

complex genetic contribution to the 

outcomes of infections, and the 

question is why some individuals 

develop life-threatening immune-

mediated pathologies [67]. Future 

gene studies might contribute to 

understand key mediators of immune 

responses. In line with this and in 

search for molecules with therapeutic 

potential, human recombinant 

soluble ACE2 (hrsACE2) is being 

studied to block early stages of 

SARS-CoV-2 infections by 

inhibiting cellular binding and 

protecting the membrane bound 

ACE2 receptors.  

 

 

 

 

 

 

 

 

 

 

Grasping the cellular activity of 

ACE2 and Ang (1-7) are required for 

better therapies for cardiovascular 

diseases. In addition, strategies 

targeting ACE2 may offer beside 

vaccines a novel approach in the 

search for prevention and 

management of COVID 19.  
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